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Analysis of Open-Type Dielectric Waveguides
by the Finite-Element Iterative Method

MASATOSHI IKEUCHI, HIDEO SAWAMI, anp HIROSHI NIKI

A bstract— Dispersion characteristics for open-type dielectric waveguide
structures operated at millimeter-and submillimeter-wave frequencies are
calculated by a finite-element iterative procedure with a given criterion on
the maximum field strength at the virtual boundary. Numerical results for a
rectangular dielectric image guide are presented and compared with results
from other methods. The strip dielectric guide and the insulated image
guide with finite-or infinite-width substrates are also analyzed.

I. INTRODUCTION

ARIOUS dielectric waveguide structures operated at

millimeter-and submillimeter-wave frequencies have
been recently developed [1]-[3]. In the structure design, it
becomes important to calculate the dispersion characteris-
tics, the field distributions, and other quantities. However,
rigorous solutions have not been known except for specific
structures [4]. Many approximate and numerical methods
[1]-[10] for analyzing the various structures (see Fig. 1.)
have been presented in the past decade. Among them, the
effective dielectric constant method [1], [2], the transverse
resonance method [5], [6], and other methods [3], [7] which
cannot provide complete information on the field distribu-
tions, and it has been recently suggested [8] that [1], [2] are
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Fig. 1. Daelectric waveguide structures with conducting ground plane.
(a) Dielectric image gwde. (b) Strip dielectric guide for €, >¢,, in-
sulated image guide for €; <e,, single-material guide for €, =¢,. (c)
Inverted strip dielectric gude for €, <e,

the single-mode approximations. The field-matching
method [9] and the method employing the telegraphist’s
equation [10] are efficient where metallic walls are as-
sumed. The influence of the metallic wall on the inherent
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characteristics is not rigorously and systematically dis-
cussed in the mode-matching method [8] as well as [9], [10].
On the other hand, the finite-element method (e.g., [11],
[12]) has been applied to dielectric waveguide structures
enclosed by metallic walls. It is not easy to treat the
open-type structure involving inhomogeneous dielectric
media, except for the so-called quasi-static approximation
[13], [14]. Boundary elements [15] have been recently devel-
oped for open-type structures, but an empirical parameter
is introduced and the variational formula [16] for the
close-type structure is employed.

In this paper, a finite-element iterative method based on
shifting the bounded region for analysis to satisfy a given
criterion at a virtual boundary is presented. The virtual
boundary is mathematically and physically chosen to en-
close the open-type dielectric waveguide structure. An E, -
H, variational formulation {16]-[18] is employed. In the
present method, the influence of the virtual boundary on
the dispersion characteristics and the field distributions can
be predicted, and thus solutions with desired accuracies
can be systematically obtained.

II. FiNiTE-ELEMENT ITERATIVE METHOD

A. Variational Formulation

Assume the dielectric waveguide structure to be uniform,
with isotropic, loss-free media, as shown in Fig. 2. The
bounded region S(R)(=Q,UR,) for analysis is separated
from the unbounded region by the virtual boundary T'(R).
{2, denotes the core with the maximum radius r(<R). The
‘propagating modes can be expressed as a combination of
the TE and TM modes. The E,-H, variational formula
[17], [18] for the electromagnetic field in S(R) is known to
be

JOI.L(R)fVuTLVudS—fDuTM(au/as)ds—ké/;(R JuNuds—,
A )

where the field is assumed to have the dependence e/“
with the angular frequency w. Also, the symbols are

u =9, $)7=[H..(weo /B)E.T.
E,, H, axial components,
v gradient operator,
D internal boundary of €, and £,,
s tangential unit vector to T'(R),
B propagation constant,
kg =(w/c)(1—¢,),
€, =(Bc/w)* effective dielectric constant,
¢ =1/€ohy light velocity in vacuum,
T =(l—e¢,)/(e,—¢,) coupling parameter,
€, relative dielectric constant,
L =N,
0 TE,

M | —re, O

1 0
N - [O eeer}'
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Fig. 2. Geometry of the problem. €, =¢,,€q, €, > €, Z¢€, €, is permittiv-
ity in vacuum and I'(R) is the virtual boundary.

The last term in the right-hand side of (1) is

L=j| u'Kvds (2)
T(R)
where
v =[& 0" =[H,,(weo /BE,]",
E , H tangential components,
K =(k3 /1B)M.

. Here, (2) denotes the Poynting’s power flow in the outward

normal direction n, through I'(R). Note that (1) is not
defined for w=0 and /or B=0. Now J, becomes zero when
the distance R 1s infinite, or when both ¢ and ¢ are zero at
T'(R). In other words, ¢ should be forced to be zero at
I'(R) when ¢ is assumed to be zero. Therefore, for the
bounded region S(R), the authors present the following
constrained extremal problem: extremize the variational
formula

J=Jy+J, (3)
with respect to u with the constraint
Y(x,y)=0,  for(x,y)ET(R) (4)
(1
and such that the quantity
I(R)=2010g[ max _[¢(x, )]/ max |u(x, y)|]
(x, »)ET(R) (x, »)ES(R)

(5)

is minimized. Here, I( R) represents the normalized maxi-
mum field strength at I'(R), and J approaches J, for
I(R)— — . Then ¢(x, y)—0 and 3¢(x, y)/dn—0 ((x, y)
€T'(R)), and J,—0. Thus I(R) physically means the mag-
nitude of the Poynting’s power flow J, through T'(R). The
minimization of I(R) is possible since ¢(x, ) ((x, y)E
T'(R)) does not become zero for finite R excepting the case
of the complete TM-mode propagation, and since u and o
are exponentially damping with respect to R(>r).

B. Finite-Element Formulation

For the nth finite distance R,, the bounded region
S(R,)=S, enclosed by I'(R,)=T, is consistently sub-
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j=2

Fig. 3. Triangular element A". j(=1,2,3) denotes the node number.

divided [18] into triangular elements A" (see Fig. 3.) Here,
the subscript »(= 1) corresponds to the iteration number.
The axial components u=[¢, ¢]7 are approximated over A*
in the usual way, as

n 3 7

uz[i}: EJ:I ij(xa )’) (6)
l[/n 23:1'4/]"6()6, )’)

where u) =[{¢j'.’},{\,bj"}]T is the unknown element vector

and {f(x, y)} is the linear interpolating function [18].

Substituting (6) into (3) and extremizing it with respect to
u}, the following element matrix equation is derived:

TA Te C
BJ/E)u:,':[ ] ul

—7e,C| Tee, A
B 0 . "
kil | v ekt spe =0 @

1,2,3
A,J:ffAhvf,vfde, B,J:fff,jde,
C,J:fAhDﬁ(ag/as)ds, and w” f fv ds

where for i, j=

- (8)

Here, v7 is the finite-element approximation to the tangen-
tial components [, —¢17, and A*D, A'T, denote the dis-
cretized internal and virtual boundaries for A* respec-
tively. A, B, and C(=—CT) are known as the element
stiffness, mass, and coupling matrices, respectively. Note
that C is generated only for the tangential element to D, as
seen from the third equation in (8). The load vector w” is
not required to be generated in practice, because of the
criterion (10) described below. Assume that #” is the un-
known global vector generated by assembling all u? over
S,. Then (5) can be approximated as

I(R,)=~=~8,=20log [llufll /llu"Il] (9)

where ||-]| denotes the maximum norm and up stands for
the nodal values at I,. Instead of minimizing (5). the
following criterion is presented:

8,=8 (10)

where 8 is given as a large positive number. Here, —§
means the upper limit for I(R), and thus the magnitude of
J, is approximately proportional to e ~%/1%. Therefore, the
influence of T'(R) on the dispersion characteristics and
other quantities can be predicted by (10). From (7) and

(10) the following global matrix equation is derived:

Gu"=kiHu (11)

where G, and H, are real, symmetric matrices and u" is
forced to satisfy (4). In the practical computations, (11) is
first solved for the initial bounded region S,(n=1) at the
fixed, large €, (1 <<e,<maxe,), where S, is chosen to be
slightly larger than the core 2, since the surface waves
concentrate in €, at the high frequencies. If the solution u'
at the first stage is satisfied by (10), then (11) is succes-
sively solved for S, at the fixed, smaller €,. Otherwise, the
second bounded region S, is next chosen, where S,D
S, -+ D8, and the computations are repeated until u”
satisfies (10). It is suggested that the iteration number n=2
or 3 at most. As a result, the solutions k(=w/c) and "
with the desired accuracies will be obtained over the wide
range of ¢, (or Bc/w), except for nonphysical, spurious
solutions [17],{18],{20],[21] (see Section III-C). Note that
the spurious solutions occur in slow-wave region (e, >1)
[18],[21].

III. NUMERICAL RESULTS

A. Rectangular Dielectric Image Guide

Fig. 4 shows the bounded region S (n=1,2,---) for
analysis and the subdivisions into elements. Fig. 5 shows
the normalized field strength F, in the vertical direction.
Here, F, asymptotically approaches F, shown by the broken
line, as the iteration number n is increasing, or as S, is
extending. Then F_ will be the field strength for the
unbounded problem. In Fig. 6, the behavior of the com-
puted wavenumber ka(=wa/c) at the nth stage is shown
for the distance R,, where the broken line denotes the
extrapolated value obtained by the Aitken’s formula [19]. It
is obvious that the convergence of ka depends on both R,
and the normalized propagation constant 8¢/w. Therefore,
in order to obtain solutions with desired accuracies the
virtual boundary I, should be systematically shifted
according to criterion (10), as described in Section II.
Indeed, it is found from Fig. 7 that the relative error e of
the computed ka uniformly decreases over the wide range
of Bc¢/w as n is increasing. Also, the relative error e
uniquely relates to §,, bounded by the given 8. Note that
the extrapolated ka is identified with the rigorous solution.
Here, ¢ implies the influence of both the virtual boundary
", and the finite-element approximation, and, it is esti-
mated to be less than 1.00 and 0.01 percent for §=10, 20,
respectively. Fig. 8 shows the dispersion curve for the
rectangular dielectric image guide obtained by the present
method, where =28 and the maximum value of e is esti-
mated to be less than 2.00 percent. The result obtained by
the method of [10] can be seen to be very much influenced
over 1.0<<Be/w=<1.2 by the metallic walls.

B. Strip Dielectric Guide and Insulated Image Guide

The present method is also applicable to dielectric wave-
guide structures involving multidielectric layers. For exam-
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Fig. 4. Bounded region S, for analysis enclosed by virtual boundary I,
and conducting ground plane, and the subdivision into e¢lements. a=b
=5.0 mm, €,] =2.5, €,, = 1.0, and n denotes the iteration number.
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Fig. 5. Behavior of normalized field strength F, as a function of both
the vertical distance and the iteration number. Bc/w=1400, Fig. 6. Convergence of normalized frequencies. --- denotes the extrapo-

c=1//Eelg is light velocity in vacuum, and 8, is given by (9). lated value by Aitken’s formula {19].
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Fig. 7. Relation of the relative error of computed frequencies and the Fig. 8. Dispersion characteristics of the E}| mode in dielectric image
maximum field strength at virtual boundary. & is given 1n (10). guide. a=b=5.0 mm, €, =2.5,¢,, =1.0,8=8.
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Fig. 9. Convergence of normalized frequencies. Insulated image guide
(see Fig. 10.) a=d,=d,=5.0 mm, b=10.0 mm, €,, =2.55, €,, =2.62.
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Fig. 10. Dispersion characteristics of the Ef, mode in strip dielectric
guide and insulated image guide. ---: single-material guide, a=d, =d,
=5.0 mm, b=10.0 mm, 6=38.

ple, similar results to Figs. 6 and 7 for the rectangular
dielectric image guide are obtained for the insulated image
guide, as shown in Fig. 9. Fig. 10 shows the dispersion
curves for the strip dielectric guide (e, >¢, >€; =¢,), the
insulated image guide (€5 <€, <e,), and the single-material
guide (¢; =€, >¢;) with finite-width (2b) substrates. Here,
the results are systematically calculated by setting §=38 to
the criterion (10), and then the maximum error of the
solution 2 ka is estimated to be about 2.00 percent from the
results in Figs. 6, 7, and 9. The dispersion curves for
the strip dielectric guide and the insulated image guide
separately approach to the ones for the two different
single-material guides at high frequencies. Fig. 11 shows
the dispersion curve for the strip dielectric guide with

17
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Fig. 11. Comparison of the present method with other methods for the
strip dielectric guide. w=0.65 cm, d; =0.50 cm, d, =0.32 cm, €,; =2.62,
€,, =2.55, 8=6.

infinite-width substrate, where 8=6 is set and the maxi-
mum error of k(=w/c) is estimated to be about 5.0
percent. Here, the solid line is, on the whole, different from
the results obtained by the other methods [1], [6], but better
agreement will be attained by setting & larger. In the strip
dielectric guide and the insulated image guide, the fields
penetrate into the dielectric strip and substrate, respec-
tively, when the difference between €, and €, is small. At
high frequencies, the maximum energy in the insulated
image guide is located at the center of the dielectric strip,
and the fields are very similar to the ones in the rectangular
dielectric image guide. Therefore, the insulated image guide
with finite-width substrate should be operated at high
frequencies. Note that the guiding mechanism has been
numerically discussed in [10] for dielectric waveguide struc-
tures with infinite-width substrates.

C. Compurational Remarks

In the present method, the Householder’s method, the
Cholesky method, and the method of bisections are suita-
bly used for solving (11), and the method of inverse
iterations is used for calculating (9). The finite-element
solutions in the E,—H, variational formulation have been
known to include nonphysical, spurious solutions
[17},[18],[20],[21]). In order to avoid confusion, such spuri-
ous solutions are not shown in Figs. 8, 10, and 11. For
example, in Fig. 12 the spurious modes and the physical,
high-order modes are shown for the strip dielectric guide
with finite-width substrate. The spurious solutions appear
to behave as the physical, nondispersive surface waves, but
they may be separated from the physical modes by ob-
serving the dispersion curves. Here, the dispersion curves
of the high-order modes are calculated by applying (10) for
the first mode, and then they may be worse in the accu-
racies than the dispersion curve of the first mode. The
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Fig. 12. Dispersion characteristics of a number of modes in the strip
dielectric guide (see Fig. 10). —: physical modes, ---: spurious modes,
a=d,=d,=5.0 mm, 5=10.0 mm, €,, =2.62, €,, =2.55, §=8.

dispersion curves can be improved by applying (10) for the
desired high-order modes. Note that dielectric waveguide
structures for millimeter waves are usually required to
work in a single mode.

IV. CoONCLUSION

In this paper, a finite-clement iterative method for
analyzing open-type dielectric waveguide structures is pre-
sented. The wavenumbers, field distributions, and other
quantities are systematically obtained by shifting the vir-
tual boundary T, and iteratively calculating the field
strength until the criterion (10) is satisfied. As a result,
dispersion curves with desired accuracies are calculated
over a wide range of the propagation constant 8, and also
they can be improved by setting & larger. In this sense, the
present method is a practical approach to the error estima-
tion of finite-element solutions.in unbounded problem. The
method is easily applicable to various structures, as shown
in the analysis of the strip dielectric guide with finite-or
infinite-width substrate and the others. In addition, the
solutions can be improved by employing high-order ele-
ments. In this case, the element matrix equation is ex-
pressed as (7) and (8). The method may be applicable to
optical dielectric waveguides without conducting ground
planes. In order to improve the solutions at frequencies
close to cutoffs, the bounded regions S, for analysis are
required to be extended, and then the large global matrix
equations (11) must be solved. The authors will discuss this
problem in their future work.
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