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Analysis of Open-Type Dielectric Waveguides
by the Finite-Element Iterative Method

MASATOSHI IKEUCHI, HIDEO SAWAMI, AND HIROSHI NIKI

,4 frstract— Dispersion characteristics for open-typedielectric wavegoide
strnctores operated at millimeter-and submillimeter-wavefrequencies are
calculatedby a finite-element iterative procedurewith a given criterion on
the maximumfield strengthat the virtoaf boundary.Numericaf resultsfor a

rectangular dielectric image guide are presented and compared with results

from other methods. The strip dielectric guide and the insulated image

guide with finite- or infinite-width substrates are afso anafyzed.

I. INTRODUCTION

v ARIOUS dielectric waveguide structures operated at

millimeter- and submillimeter-wave frequencies have

been recently developed [ 1]– [3]. In the structure design, it

becomes important to calculate the dispersion characteris-

tics, the field distributions, and other quantities. However,

rigorous solutions have not been known except for specific

structures [4]. Many approximate and numerical methods

[1]-[10] for analyzing the various structures (see Fig. 1.)

have been presented in the past decade. Among them, the

effective dielectric constant method [1], [2], the transverse

resonance method [5], [6], and other methods [3], [7] which

cannot provide complete information on the field distribu-

tions, and it has been recently suggested [8] that [1], [2] are
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Ground Plane
(a)

(b)

(c)

Fig. 1, Dielectric wavegulde structures with conducting ground plane.
(a) Dielectric image guide. (b) Strip dielectric guide for E, > c~, in-
sulated image guide for c, -Cc*, single-material guide for c, = c~. (c)
Inverted strip dielectric gmde for c, ~ Ez

the single - mode approximations. The field - matching

method [9] and the method employing the telegraphist’s

equation [10] are efficient where metallic walls are as-

sumed. The influence of the metallic wall on the inherent
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characteristics is not rigorously and systematically dis-

cussed in the mode-matching method [8] as well as [9], [10].

On the other hand, the finite-element method (e.g., [1 1],

[12]) has been applied to dielectric waveguide structures

enclosed by metallic walls. It is not easy to treat the

open-t ype structure involving inhomogeneous dielectric

media, except for the so-called quasi-static approximation

[13], [14]. Boundary elements [15] have been recently devel-

oped for open-type structures, but an empirical parameter

is introduced and the variational formula [16] for the

close-type structure is employed.

In this paper, a finite-element iterative method based on

shifting the bounded region for analysis to satisfy a given

criterion at a virtual boundary is presented. The virtual

boundary is mathematically and physically chosen to en-

close the open-type dielectric waveguide structure. An E= –

H, variational formulation [16]-[ 18] is employed. In the

present method, the influence of the virtual boundary on

the dispersion characteristics and the field distributions can

be predicted, and thus solutions with desired accuracies

can be systematically obtained.

II. FINITE-ELEMENT ITERATIVE METHOD

A. Variational Formulation

Assume the dielectric waveguide structure to be uniform,

with isotropic, loss-free media, as shown in Fig. 2. The

bounded region S( R )( = Q, U 02 ) for analysis is separated

from the unbounded region by the virtual boundary r(~).

Q, denotes the core with the maximum radius r( < R). The

‘propagating modes can be expressed as a combination of

the TE and TM modes. The E, –HZ variational formula

[17], [18] for the electromagnetic field in S(R) is known to

be
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Fig. 2. Geometry of the problem. c1= C,,(O, c1>62 = .s., co is permittiv-
ity in vacuum and r(R) is the virtual boundary.

The last term in the right-hand side of (1) is

where

&H,

K

J= =j

/
U ‘Ko ds

r(R)

=[’g,?l]==[H,,((’d60 /p)E,]T,
tangential components,

=(k;/r~)~.

(2)

Here, (2) denotes the Poynting’s power flow in the outward

normal direction n, through r(R). Note that ( 1 ) is not

defined for a= O and/or ~= O. Now J, becomes zero when

the distance R is infinite, or when both @ and rJ are zero at

r(R). In other words, ~ should be forced to be zero at

r(R) when ~ is assumed to be zero. Therefore, for the

bounded region S(R), the authors present the following

constrained extremal problem: extremize the variational

formula

J=JO +J, (3)

with respect to u with the constraint

lj(x, y)=o, for(x, y)=r(R) (4)

Jo z j ~vuTLvudS–~ uTA4(&@s)ds-k;j juTNudS–J, (1)
S(R) D S(R)

where the field is assumed to have the dependence eJor

with the angular frequency o. Also, the symbols are and such that the quantity

u

E,, HZ

v

D

s

B
k;

c,

c

r

(r

L

M

N

=[(#), y]~”=[H,,(CMO/~ )EZ]T,

axial components,

gradient operator,

internal boundary of 01 and f12,

tangential unit vector to r(R),

propagation constant,

=(@/c)2(l–cc),

=(&/@)’ effective dielectric constant,

=1/&Jqj light velocity in vacuum,

=(1 –(, )/((, –c,) coupling parameter,
relative dielectric constant,

= TN,

‘[ 1

0 ‘K=

—’me o ‘

[1

=1 o
o CCC, “

(5)

is minimized. Here, 1(R) represents the normalized maxi-

mum field strength at r(R), and J approaches JO for

1(~)- – co. Then @(.x, y)-O and a~(x, y)/i3n~o ((x, y)

c r(Z?)), and J.-+0. Thus I(R) physically means the mag-

nitude of the Poynting’s power flow J. through r(R). The

minimization of I(R) is possible since @(x, y) ((x, y) E

r(R)) does not become zero for finite R excepting the case

of the complete TM-mode propagation, and since u and o

are exponentially damping with respect to R( > r ).

B. Finite-Element Formulation

For the n th finite distance R., the bounded region

S(R.) = S. enclosed by r(Rn ) = r. is consistently sub-
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Fig. 3. Triangular element Ah.j( = 1,2, 3) denotes the node number.

divided [18] into triangular elements Ah (see Fig. 3.) Here,

the subscript n( ~ 1) corresponds to the iteration number.
The axial components u= [+, ~]= are approximated over Ah

in the usual way, as

where u: = [{+;}, {JJjn }] T is the unknown element vector

and { j(x, y)} is the linear interpolating function [18].

Substituting (6) into (3) and extremizing it with respect to

u:, the following element matrix equation is derived:

where for i, j= 1,2,3

A,,=~jjdVJdS, B,j=~jJ&dS,

1. (8)

c,,=~f(aJ/a.)d. andw:= ,u:ds ‘ ‘AI,D /f jA“ r,,

Here, o: is the finite-element approximation to the tangen-

tial components [q, – t] ~, and AhD, AhI’. denote the dis-

cretized internal and virtual boundaries for Ah, respec-

tively. A, B, and C( = – CT) are known as the element

stiffness, mass, and coupling matrices, respectively. Note

that C is generated only for the tangential element to D, as

seen from the third equation in (8). The load vector we” is

not required to be generated in practice, because of the

criterion (10) described below. Assume that Un is the un-

known global vector generated by assembling all u: over

S.. Then (5) can be approximated as

I(Rn)&–i$n =2010g[Il u~ll/llu”ll] (9)

where II . II denotes the maximum norm and u; stands for

the nodal values at r.. Instead of minimizing (5). the

following criterion is presented:

8n~8 (lo)

where 8 is given as a large positive number. Here, — 8

means the upper limit for 1(R), and thus the magnitude of

~, is approximately proportional to e ‘8/10. Therefore, the

influence of I’(R) on the dispersion characteristics and

other quantities can be predicted by (10). From (7) and

(10) the following global matrix equation is derived:

G~un =k;H,un (11)

where G~ and H. are real, symmetric matrices and u n is

forced to satisfy (4). In the practical computations, (11) is

first solved for the initial bounded region S1( n = 1) at the

fixed, large c,( 1< cc < max t,), where S1 is chosen to be

slightly larger than the core !J, since the surface waves

concentrate in Q, at the high frequencies. If the solution u’

at the first stage is satisfied by (10), then (11) is succes-

sively solved for S1 at the fixed, smaller c,. Otherwise, the

second bounded region S2 is next chosen, where S. ~

sn_, .- .0 S1, and the computations are repeated until u”

satisfies (10). It is suggested that the iteration number n = 2

or 3 at most. As a result, the solutions k( = ti/c) and u“

with the desired accuracies will be obtained over the wide

range of c. (or &/u), except for nonphysical, spurious

solutions [17], [18], [20], [21 ] (see Section III-C). Note that

the spurious solutions occur in slow-wave region (c, > 1)

[18], [21].

111. NUMERICAL ICESULTS

A. Rectangular Dielectric Image Guide

Fig. 4 shows the bounded region SJ n = 1,2, . ..) for

analysis and the subdivisions into elements. Fig. 5 shows

the normalized field strength F. in the vertical direction.

Here, ~, asymptotically approaches F~ shown by the broken

line, as the iteration number n is increasing, or as S. is

extending. Then F~ will be the field strength for the

unbounded problem. ln Fig. 6, the behavior of the com-

puted wavenumber ka( = tia/c) at the n th stage is shown

for the distance R,,, where the broken line denotes the

extrapolated value obtained by the Aitken’s formula [19]. lt

is obvious that the convergence of ka depends on both R.

and the normalized propagation constant Be/o. Therefore,

in order to obtain solutions with desired accuracies the

virtual boundary r,, should be systematically shifted

according to criterion (10), as described in Section II.

Indeed, it is found from Fig. 7 that the relative error e of

the computed ka uniformly decreases over the wide range

of ~c/ti as n is increasing. Also, the relative error e

uniquely relates to 8,,, bounded by the given 8. Note that

the extrapolated ku is identified with the rigorous solution.

Here, e implies the influence of both the virtual boundary

r,, and the finite-element approximation, and, it is esti-

mated to be less than 1.00 and 0.01 percent for 8 = 10, 20,

respectively. Fig. 8 shows the dispersion curve for the

rectangular dielectric image guide obtained by the present

method, where 8 = 8 and the maximum value of e is esti-

mated to be less than 2.00 percent. The result obtained by

the method of [10] can be seen to be very much influenced

over 1.O<Bc/ti< 1.2 by the metallic walls.

B. Strip Dielectric Guide and Insulated Image Guide

The present method is also applicable to dielectric wave-

guide structures involving multidielectric layers. For exam-
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Fig. 4, Bounded region S. for analysis enclosed by virtual boundary f7.
and conducting ground plane, and the subdivision into elements. a= b

=5.0 mm, (,1 =2.5, (,2 = 1.0, and n denotes the iteration number.
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Fig. 5. Behavior of normalized field strength F. as a function of both
the vertical distance and the iteration number. ~ c/a H 1.400,
~H I /m is light velocity in vacuum, and r3nis given by (9).
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Fig. 9. Convergence of normalized frequencies. Insulated image guide
(see Fig. 10.) a=d, =d, =5.0 mm, b= 10.0 mm, c,, =2.55, C,2=2.62.
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Fig. 10. Dispersion characteristics of the E/’, mode in strip dielectric
guide and insulated image guide. ---: single-material guide, a =d, = d2
=5.0 mm, b=10.O mm, 8=8.

pie, similar results to Figs. 6 and 7 for the rectangular

dielectric image guide are obtained for the insulated image

guide, as shown in Fig. 9. Fig. 10 shows the dispersion

curves for the strip dielectric guide ((, > c ~ > c g = c ~ ), the

insulated image guide (c ~ <~, < c ~ ), and the single-material

guide (c, = c ~ > c ~) with finite-width (2b) substrates. Here,

the results are systematically calculated by setting 8=8 to

the criterion (10), and then the maximum error of the

solution 2ka is estimated to be about 2.00 percent from the

results in Figs. 6, 7, and 9. The dispersion curves for

the strip dielectric guide and the insulated image guide

separately approach to the ones for the two different

single-material guides at high frequencies. Fig. 11 shows

the dispersion curve for the strip dielectric guide with

16 -

/
15-

/

1.4-
3
:
’13 - — Present Method

——– Ref. HI

—-— Ref. [61

11

1.0..-
0 2 4 6 8 10

cJlc (cm-l)

Fig. 11. Comparison of the present method with other methods for the

strip dielectric guide. w=O.65 cm, d, =0.50 cm, d2 =0.32 cm, (,1 =2.62,
<,2 =2.55, 6=6.

infinite-width substrate, where 8 = 6 is set and the maxi-

mum error of k( ==ti/c) is estimated to be about 5.0

percent, Here, the solid line is, on the whole, different from

the results obtained by the other methods [1], [6], but better

agreement will be attained by setting 8 larger. In the strip

dielectric guide and the insulated image guide, the fields

penetrate into the dielectric strip and substrate, respec-

tively, when the difference between c, and t ~ is small. At

high frequencies, the maximum energy in the insulated

image guide is located at the center of the dielectric strip,

and the fields are very similar to the ones in the rectangular

dielectric image guide. Therefore, the insulated image guide

with finite-width substrate should be operated at high

frequencies. Note that the guiding mechanism has been

numerically discussed in [10] for dielectric waveguide struc-

tures with infinite-width substrates.

C. Computational Remarks

In the present method, the Householder’s method, the

Cholesky method, and the method of bisections are suita-

bly used for solving (1 1), and the method of inverse

iterations is used for calculating (9). The finite-element

solutions in the EZ–Hz variational formulation have been

known to include nonphysical, spurious solutions

[17], [18], [20], [21]. In order to avoid confusion, such spuri-

ous solutions are not shown in Figs. 8, 10, and 11. For

example, in Fig. 12 the spurious modes and the physical,

high-order modes are shown for the strip dielectric guide

with finite-width substrate. The spurious solutions appear

to behave as the physical, nondispersive surface waves, but

they may be separated from the physical modes by ob-

serving the dispersion curves. Here, the dispersion curves

of the high-order modes are calculated by applying (1 O) for

the first mode, and then they may be worse in the accu-

racies than the dispersion curve of the first mode. The
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Fig. 12. Dispersion characteristicsof a number of modes in the strip
dielectric guide (see Fig. 10). —: physical modes, ---: spurious modes,
a=dl =dz =5.o mm, 6= 10.0 mm, 6,1=2,62, 6,2 =2.55, 8=8.

dispersion curves can be improved by applying (10) for the

desired high-order modes. Note that dielectric waveguide

structures for millimeter waves are usually required to

work in a single mode.

IV. CONCLUSION

In this paper, a finite-element iterative method for

analyzing open-type dielectric waveguide structures is pre-

sented. The wavenumbers, field distributions, and other

quantities are systematically obtained by shifting the vir-

tual boundary I’. and iteratively calculating the field

strength until the criterion (10) is satisfied. As a result,

dispersion curves with desired accuracies are calculated

over a wide range of the propagation constant ~, and also

they can be improved by setting 6 larger. In this sense, the

present method is a practical approach to the error estima-

tion of finite-element solutionsin unbounded problem. The

method is easily applicable to various structures, as shown

in the analysis of the strip dielectric guide with finite-or

infinite-width substrate and the others. In addition, the

solutions can be improved by employing high-order ele-

ments. In this case, the element matrix equation is ex-

pressed as (7) and (8). The method may be applicable to

optical dielectric waveguides without conducting ground

planes. In order to improve the solutions at frequencies

close to cutoffs, the bounded regions S. for analysis are

required to be extended, and then the large global matrix

equations (11) must be solved. The authors will dkcuss this

problem in their future work.
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